JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.Tech I - Semester Examinations, March/April -2011
 ADVANCED HEAT AND MASS TRANSFER
 (THERMAL ENGINEERING)

Time: 3hours
Max. Marks: 60

Answer any five questions
 All questions carry equal marks

1.a) Derive the equation for heat transfer with variable thermal conductivity with temperature.
b) A steam pipe of 120 mm OD is covered with two layers of lagging inside being 45 mm thick ($k=0.08 \mathrm{w} / \mathrm{m}-\mathrm{k}$) and outside layer of 30 mm thick ($\mathrm{k}=0.12 \mathrm{w} / \mathrm{m}-\mathrm{k}$). Pipe conveys steam at 20 bar with $50^{\circ} \mathrm{C}$ super heat, outside temperature of lagging is $25^{\circ} \mathrm{C}$ and length of steam pipe is 30 m long. Calculate heat lost per hr , interface temperature of lagging.
[6+6]
2.a) Derive the temperature distribution and heat transfer rate through infinitely long fin.
b) A turbine baled of stainless steel ($\mathrm{k}=30 \mathrm{w} / \mathrm{m}-\mathrm{k}$) is 60 mm long, $500 \mathrm{~mm}^{2} \mathrm{CS}$ area and 120 mm perimeter, temperature at the root of the blade is $45^{\circ} \mathrm{C}$ and exposed to combustion gases at $820^{\circ} \mathrm{C}$. Calculate the temperature at the middle of the blade and rate of heat flow from blade ($\mathrm{h}=320 \mathrm{w} / \mathrm{m}^{2} \mathrm{~K}$).
3.a) Derive the equation for temperature distribution for Newtonian heating/cooling process.
b) A long cylindrical bar ($\mathrm{k}=17 \mathrm{w} / \mathrm{m}-\mathrm{k}$); $\alpha=0.019 \mathrm{~m}^{2} / \mathrm{hr}$ of radius 80 mm comes out of oven at $830^{\circ} \mathrm{C}$ throughout and quenched in a large bath of $40^{\circ} \mathrm{C}$. If $\mathrm{h}=180 \mathrm{w} / \mathrm{m}^{2} \mathrm{k}$, calculate the time taken by the shaft centre to reach $120^{\circ} \mathrm{C}$ and surface temperature when surface is at $120^{\circ} \mathrm{C}$. Also calculate the temperature gradient at the outside surface at the same instant of time.
4.a) Significance of Nusselt number and Prandtl number in free convection.
b) Two horizontal steam pipes of 100 mm and 300 mm diameters are so laid in the boiler house that the mutual heat transfer may be neglected. The surface temperature of each of the steam pipes $475^{\circ} \mathrm{C}$. If ambient air is at $35^{\circ} \mathrm{C}$, calculate the ratio of heat losses per metre length of pipes.
5. Air at $30^{\circ} \mathrm{C}$ flows at $2.2 \mathrm{~m} / \mathrm{s}$ over plate at $90^{\circ} \mathrm{C}$. Length and width of the plate are 900 mm and 450 mm . Calculate the heat transfer rate from
i) First half of the plate
ii) Full plate and
iii) Next half of the plate.
6.a) Explain the regimes of flux plot.
b) A steam condenser consisting of square array of 625 horizontal tubes each 6 mm in dia. Tubes are exposed to saturated steam at 15 Kpa and tube surface is at $25^{\circ} \mathrm{C}$. Calculate the heat transfer coefficient, rate at which is steam condensed per metre length. [6+6]
7.a) Radiation shape factor - its concept in calculation.
b) Calculate the net radiant heat exchange per m^{2} area for the large parallel at $427^{\circ} \mathrm{C}$ and $27^{0} \mathrm{C}$, emissivity $=0.4$.
8. Write short notes on:
a) Applications of FDM in heat transfer
b) Conduction shape factor - details
c) Time constant of thermo couple - calculation method.

